I'm running the following script in R. If I use a %do% rather than a %dopar% the script works fine. However, if in the outer loop I use a %dopar% the loop runs forever without throwing any error (constant increase in memory usage until it goes out of memory). I'm using 16 cores.
library(parallel) library(foreach) library(doSNOW) library(dplyr) NumberOfCluster <- 16 cl <- makeCluster(NumberOfCluster) registerDoSNOW(cl) foreach(i = UNSPSC_list, .packages = c('data.table', 'dplyr'), .verbose = TRUE) %dopar% { terms <- as.data.table(unique(gsub(" ", "", unlist(terms_list_by_UNSPSC$Terms[which(substr(terms_list_by_UNSPSC$UNSPSC,1,6) == i)])))) temp <- inner_join(N_of_UNSPSCs_by_Term, terms, on = 'V1') temp$V2 <- 1/as.numeric(temp$V2) temp <- temp[order(temp$V2, decreasing = TRUE),] names(temp) <- c('Term','Imp') ABNs <- unique(UNSPSCs_per_ABN[which(substr(UNSPSCs_per_ABN$UNSPSC,1,4) == substr(i,1,4)), 1]) predictions <- as.numeric(vector()) predictions <- foreach (j = seq(1 : nrow(train)), .combine = 'c', .packages = 'dplyr') %do% { descr <- names(which(!is.na(train[j,]) == TRUE)) if(unlist(predict_all[j,1]) %in% unlist(ABNs) || !unlist(predict_all[j,1]) %in% unlist(suppliers)) {union_all(predictions, sum(temp$Imp[which(temp$Term %in% descr)]))} else {union_all(predictions, 0)} } save(predictions, file = paste("Predictions", i,".rda", sep = "_")) }
1 Answers
Answers 1
The proper way of nesting foreach
loop is using %:%
operator. See the example. I have tested it on Windows.
library(foreach) library(doSNOW) NumberOfCluster <- 4 cl <- makeCluster(NumberOfCluster) registerDoSNOW(cl) N <- 1e6 system.time(foreach(i = 1:10, .combine = rbind) %:% foreach(j = 1:10, .combine = c) %do% mean(rnorm(N, i, j))) system.time(foreach(i = 1:10, .combine = rbind) %:% foreach(j = 1:10, .combine = c) %dopar% mean(rnorm(N, i, j)))
Output:
> system.time(foreach(i = 1:10, .combine = rbind) %:% + foreach(j = 1:10, .combine = c) %do% mean(rnorm(N, i, j))) user system elapsed 7.38 0.23 7.64 > system.time(foreach(i = 1:10, .combine = rbind) %:% + foreach(j = 1:10, .combine = c) %dopar% mean(rnorm(N, i, j))) user system elapsed 0.09 0.00 2.14
0 comments:
Post a Comment