Thursday, December 28, 2017

Why are numpy functions so slow on pandas series / dataframes?

Leave a Comment

Consider a small MWE, taken from another question:

DateTime                Data 2017-11-21 18:54:31     1 2017-11-22 02:26:48     2 2017-11-22 10:19:44     3 2017-11-22 15:11:28     6 2017-11-22 23:21:58     7 2017-11-28 14:28:28    28 2017-11-28 14:36:40     0 2017-11-28 14:59:48     1 

The goal is to clip all values with an upper bound of 1. My answer uses np.clip, which works fine.

np.clip(df.Data, a_min=None, a_max=1) array([1, 1, 1, 1, 1, 1, 0, 1]) 

Or,

np.clip(df.Data.values, a_min=None, a_max=1) array([1, 1, 1, 1, 1, 1, 0, 1]) 

Both of which return the same answer. My question is about the relative performance of these two methods. Consider -

df = pd.concat([df]*1000).reset_index(drop=True)  %timeit np.clip(df.Data, a_min=None, a_max=1) 1000 loops, best of 3: 270 µs per loop  %timeit np.clip(df.Data.values, a_min=None, a_max=1) 10000 loops, best of 3: 23.4 µs per loop 

Why is there such a massive difference between the two, just by calling values on the latter? In other words...

Why are numpy functions so slow on pandas objects?

4 Answers

Answers 1

Yes, it seems like np.clip is a lot slower on pandas.Series than on numpy.ndarrays. That's correct but it's actually (at least asymptomatically) not that bad. 8000 elements is still in the regime where constant factors are major contributors in the runtime. I think this is a very important aspect to the question, so I'm visualizing this (borrowing from another answer):

# Setup  import pandas as pd import numpy as np  def on_series(s):     return np.clip(s, a_min=None, a_max=1)  def on_values_of_series(s):     return np.clip(s.values, a_min=None, a_max=1)  # Timing setup timings = {on_series: [], on_values_of_series: []} sizes = [2**i for i in range(1, 26, 2)]  # Timing for size in sizes:     func_input = pd.Series(np.random.randint(0, 30, size=size))     for func in timings:         res = %timeit -o func(func_input)         timings[func].append(res)  %matplotlib notebook  import matplotlib.pyplot as plt import numpy as np  fig, (ax1, ax2) = plt.subplots(1, 2)  for func in timings:     ax1.plot(sizes,               [time.best for time in timings[func]],               label=str(func.__name__)) ax1.set_xscale('log') ax1.set_yscale('log') ax1.set_xlabel('size') ax1.set_ylabel('time [seconds]') ax1.grid(which='both') ax1.legend()  baseline = on_values_of_series # choose one function as baseline for func in timings:     ax2.plot(sizes,               [time.best / ref.best for time, ref in zip(timings[func], timings[baseline])],               label=str(func.__name__)) ax2.set_yscale('log') ax2.set_xscale('log') ax2.set_xlabel('size') ax2.set_ylabel('time relative to {}'.format(baseline.__name__)) ax2.grid(which='both') ax2.legend()  plt.tight_layout() 

enter image description here

It's a log-log plot because I think this shows the important features more clearly. For example it shows that np.clip on a numpy.ndarray is faster but it also has a much smaller constant factor in that case. The difference for large arrays is only ~3! That's still a big difference but way less than the difference on small arrays.

However, that's still not an answer to the question where the time difference comes from.

The solution is actually quite simple: np.clip delegates to the clip method of the first argument:

>>> np.clip?? Source:    def clip(a, a_min, a_max, out=None):     """     ...     """     return _wrapfunc(a, 'clip', a_min, a_max, out=out)  >>> np.core.fromnumeric._wrapfunc?? Source:    def _wrapfunc(obj, method, *args, **kwds):     try:         return getattr(obj, method)(*args, **kwds)     # ...     except (AttributeError, TypeError):         return _wrapit(obj, method, *args, **kwds) 

The getattr line of the _wrapfunc function is the important line here, because np.ndarray.clip and pd.Series.clip are different methods, yes, completely different methods:

>>> np.ndarray.clip <method 'clip' of 'numpy.ndarray' objects> >>> pd.Series.clip <function pandas.core.generic.NDFrame.clip> 

Unfortunately is np.ndarray.clip a C-function so it's hard to profile it, however pd.Series.clip is a regular Python function so it's easy to profile. Let's use a Series of 5000 integers here:

s = pd.Series(np.random.randint(0, 100, 5000)) 

For the np.clip on the values I get the following line-profiling:

%load_ext line_profiler %lprun -f np.clip -f np.core.fromnumeric._wrapfunc np.clip(s.values, a_min=None, a_max=1)  Timer unit: 4.10256e-07 s  Total time: 2.25641e-05 s File: numpy\core\fromnumeric.py Function: clip at line 1673  Line #      Hits         Time  Per Hit   % Time  Line Contents ==============================================================   1673                                           def clip(a, a_min, a_max, out=None):   1674                                               """   ...   1726                                               """   1727         1           55     55.0    100.0      return _wrapfunc(a, 'clip', a_min, a_max, out=out)  Total time: 1.51795e-05 s File: numpy\core\fromnumeric.py Function: _wrapfunc at line 55  Line #      Hits         Time  Per Hit   % Time  Line Contents ==============================================================     55                                           def _wrapfunc(obj, method, *args, **kwds):     56         1            2      2.0      5.4      try:     57         1           35     35.0     94.6          return getattr(obj, method)(*args, **kwds)     58                                                59                                               # An AttributeError occurs if the object does not have     60                                               # such a method in its class.     61                                                62                                               # A TypeError occurs if the object does have such a method     63                                               # in its class, but its signature is not identical to that     64                                               # of NumPy's. This situation has occurred in the case of     65                                               # a downstream library like 'pandas'.     66                                               except (AttributeError, TypeError):     67                                                   return _wrapit(obj, method, *args, **kwds) 

But for np.clip on the Series I get a totally different profiling result:

%lprun -f np.clip -f np.core.fromnumeric._wrapfunc -f pd.Series.clip -f pd.Series._clip_with_scalar np.clip(s, a_min=None, a_max=1)  Timer unit: 4.10256e-07 s  Total time: 0.000823794 s File: numpy\core\fromnumeric.py Function: clip at line 1673  Line #      Hits         Time  Per Hit   % Time  Line Contents ==============================================================   1673                                           def clip(a, a_min, a_max, out=None):   1674                                               """   ...   1726                                               """   1727         1         2008   2008.0    100.0      return _wrapfunc(a, 'clip', a_min, a_max, out=out)  Total time: 0.00081846 s File: numpy\core\fromnumeric.py Function: _wrapfunc at line 55  Line #      Hits         Time  Per Hit   % Time  Line Contents ==============================================================     55                                           def _wrapfunc(obj, method, *args, **kwds):     56         1            2      2.0      0.1      try:     57         1         1993   1993.0     99.9          return getattr(obj, method)(*args, **kwds)     58                                                59                                               # An AttributeError occurs if the object does not have     60                                               # such a method in its class.     61                                                62                                               # A TypeError occurs if the object does have such a method     63                                               # in its class, but its signature is not identical to that     64                                               # of NumPy's. This situation has occurred in the case of     65                                               # a downstream library like 'pandas'.     66                                               except (AttributeError, TypeError):     67                                                   return _wrapit(obj, method, *args, **kwds)  Total time: 0.000804922 s File: pandas\core\generic.py Function: clip at line 4969  Line #      Hits         Time  Per Hit   % Time  Line Contents ==============================================================   4969                                               def clip(self, lower=None, upper=None, axis=None, inplace=False,   4970                                                        *args, **kwargs):   4971                                                   """   ...   5021                                                   """   5022         1           12     12.0      0.6          if isinstance(self, ABCPanel):   5023                                                       raise NotImplementedError("clip is not supported yet for panels")   5024                                              5025         1           10     10.0      0.5          inplace = validate_bool_kwarg(inplace, 'inplace')   5026                                              5027         1           69     69.0      3.5          axis = nv.validate_clip_with_axis(axis, args, kwargs)   5028                                              5029                                                   # GH 17276   5030                                                   # numpy doesn't like NaN as a clip value   5031                                                   # so ignore   5032         1          158    158.0      8.1          if np.any(pd.isnull(lower)):   5033         1            3      3.0      0.2              lower = None   5034         1           26     26.0      1.3          if np.any(pd.isnull(upper)):   5035                                                       upper = None   5036                                              5037                                                   # GH 2747 (arguments were reversed)   5038         1            1      1.0      0.1          if lower is not None and upper is not None:   5039                                                       if is_scalar(lower) and is_scalar(upper):   5040                                                           lower, upper = min(lower, upper), max(lower, upper)   5041                                              5042                                                   # fast-path for scalars   5043         1            1      1.0      0.1          if ((lower is None or (is_scalar(lower) and is_number(lower))) and   5044         1           28     28.0      1.4                  (upper is None or (is_scalar(upper) and is_number(upper)))):   5045         1         1654   1654.0     84.3              return self._clip_with_scalar(lower, upper, inplace=inplace)   5046                                              5047                                                   result = self   5048                                                   if lower is not None:   5049                                                       result = result.clip_lower(lower, axis, inplace=inplace)   5050                                                   if upper is not None:   5051                                                       if inplace:   5052                                                           result = self   5053                                                       result = result.clip_upper(upper, axis, inplace=inplace)   5054                                              5055                                                   return result  Total time: 0.000662153 s File: pandas\core\generic.py Function: _clip_with_scalar at line 4920  Line #      Hits         Time  Per Hit   % Time  Line Contents ==============================================================   4920                                               def _clip_with_scalar(self, lower, upper, inplace=False):   4921         1            2      2.0      0.1          if ((lower is not None and np.any(isna(lower))) or   4922         1           25     25.0      1.5                  (upper is not None and np.any(isna(upper)))):   4923                                                       raise ValueError("Cannot use an NA value as a clip threshold")   4924                                              4925         1           22     22.0      1.4          result = self.values   4926         1          571    571.0     35.4          mask = isna(result)   4927                                              4928         1           95     95.0      5.9          with np.errstate(all='ignore'):   4929         1            1      1.0      0.1              if upper is not None:   4930         1          141    141.0      8.7                  result = np.where(result >= upper, upper, result)   4931         1           33     33.0      2.0              if lower is not None:   4932                                                           result = np.where(result <= lower, lower, result)   4933         1           73     73.0      4.5          if np.any(mask):   4934                                                       result[mask] = np.nan   4935                                              4936         1           90     90.0      5.6          axes_dict = self._construct_axes_dict()   4937         1          558    558.0     34.6          result = self._constructor(result, **axes_dict).__finalize__(self)   4938                                              4939         1            2      2.0      0.1          if inplace:   4940                                                       self._update_inplace(result)   4941                                                   else:   4942         1            1      1.0      0.1              return result 

I stopped going into the subroutines at that point because it already highlights where the pd.Series.clip does much more work than the np.ndarray.clip. Just compare the total time of the np.clip call on the values (55 timer units) to one of the first checks in the pandas.Series.clip method, the if np.any(pd.isnull(lower)) (158 timer units). At that point the pandas method didn't even start at clipping and it already takes 3 times longer.

However several of these "overheads" become insignificant when the array is big:

s = pd.Series(np.random.randint(0, 100, 1000000))  %lprun -f np.clip -f np.core.fromnumeric._wrapfunc -f pd.Series.clip -f pd.Series._clip_with_scalar np.clip(s, a_min=None, a_max=1)  Timer unit: 4.10256e-07 s  Total time: 0.00593476 s File: numpy\core\fromnumeric.py Function: clip at line 1673  Line #      Hits         Time  Per Hit   % Time  Line Contents ==============================================================   1673                                           def clip(a, a_min, a_max, out=None):   1674                                               """   ...   1726                                               """   1727         1        14466  14466.0    100.0      return _wrapfunc(a, 'clip', a_min, a_max, out=out)  Total time: 0.00592779 s File: numpy\core\fromnumeric.py Function: _wrapfunc at line 55  Line #      Hits         Time  Per Hit   % Time  Line Contents ==============================================================     55                                           def _wrapfunc(obj, method, *args, **kwds):     56         1            1      1.0      0.0      try:     57         1        14448  14448.0    100.0          return getattr(obj, method)(*args, **kwds)     58                                                59                                               # An AttributeError occurs if the object does not have     60                                               # such a method in its class.     61                                                62                                               # A TypeError occurs if the object does have such a method     63                                               # in its class, but its signature is not identical to that     64                                               # of NumPy's. This situation has occurred in the case of     65                                               # a downstream library like 'pandas'.     66                                               except (AttributeError, TypeError):     67                                                   return _wrapit(obj, method, *args, **kwds)  Total time: 0.00591302 s File: pandas\core\generic.py Function: clip at line 4969  Line #      Hits         Time  Per Hit   % Time  Line Contents ==============================================================   4969                                               def clip(self, lower=None, upper=None, axis=None, inplace=False,   4970                                                        *args, **kwargs):   4971                                                   """   ...   5021                                                   """   5022         1           17     17.0      0.1          if isinstance(self, ABCPanel):   5023                                                       raise NotImplementedError("clip is not supported yet for panels")   5024                                              5025         1           14     14.0      0.1          inplace = validate_bool_kwarg(inplace, 'inplace')   5026                                              5027         1           97     97.0      0.7          axis = nv.validate_clip_with_axis(axis, args, kwargs)   5028                                              5029                                                   # GH 17276   5030                                                   # numpy doesn't like NaN as a clip value   5031                                                   # so ignore   5032         1          125    125.0      0.9          if np.any(pd.isnull(lower)):   5033         1            2      2.0      0.0              lower = None   5034         1           30     30.0      0.2          if np.any(pd.isnull(upper)):   5035                                                       upper = None   5036                                              5037                                                   # GH 2747 (arguments were reversed)   5038         1            2      2.0      0.0          if lower is not None and upper is not None:   5039                                                       if is_scalar(lower) and is_scalar(upper):   5040                                                           lower, upper = min(lower, upper), max(lower, upper)   5041                                              5042                                                   # fast-path for scalars   5043         1            2      2.0      0.0          if ((lower is None or (is_scalar(lower) and is_number(lower))) and   5044         1           32     32.0      0.2                  (upper is None or (is_scalar(upper) and is_number(upper)))):   5045         1        14092  14092.0     97.8              return self._clip_with_scalar(lower, upper, inplace=inplace)   5046                                              5047                                                   result = self   5048                                                   if lower is not None:   5049                                                       result = result.clip_lower(lower, axis, inplace=inplace)   5050                                                   if upper is not None:   5051                                                       if inplace:   5052                                                           result = self   5053                                                       result = result.clip_upper(upper, axis, inplace=inplace)   5054                                              5055                                                   return result  Total time: 0.00575753 s File: pandas\core\generic.py Function: _clip_with_scalar at line 4920  Line #      Hits         Time  Per Hit   % Time  Line Contents ==============================================================   4920                                               def _clip_with_scalar(self, lower, upper, inplace=False):   4921         1            2      2.0      0.0          if ((lower is not None and np.any(isna(lower))) or   4922         1           28     28.0      0.2                  (upper is not None and np.any(isna(upper)))):   4923                                                       raise ValueError("Cannot use an NA value as a clip threshold")   4924                                              4925         1          120    120.0      0.9          result = self.values   4926         1         3525   3525.0     25.1          mask = isna(result)   4927                                              4928         1           86     86.0      0.6          with np.errstate(all='ignore'):   4929         1            2      2.0      0.0              if upper is not None:   4930         1         9314   9314.0     66.4                  result = np.where(result >= upper, upper, result)   4931         1           61     61.0      0.4              if lower is not None:   4932                                                           result = np.where(result <= lower, lower, result)   4933         1          283    283.0      2.0          if np.any(mask):   4934                                                       result[mask] = np.nan   4935                                              4936         1           78     78.0      0.6          axes_dict = self._construct_axes_dict()   4937         1          532    532.0      3.8          result = self._constructor(result, **axes_dict).__finalize__(self)   4938                                              4939         1            2      2.0      0.0          if inplace:   4940                                                       self._update_inplace(result)   4941                                                   else:   4942         1            1      1.0      0.0              return result 

There are still multiple function calls, for example isna and np.where, that take a significant amount of time, but overall this is at least comparable to the np.ndarray.clip time (that's in the regime where the timing difference is ~3 on my computer).

The takeaway should probably be:

  • Many NumPy functions just delegate to a method of the object passed in, so there can be huge differences when you pass in different objects.
  • Profiling, especially line-profiling, can be a great tool to find the places where the performance difference comes from.
  • Always make sure to test differently sized objects in such cases. You could be comparing constant factors that probably don't matter except if you process lots of small arrays.

Used versions:

Python 3.6.3 64-bit on Windows 10 Numpy 1.13.3 Pandas 0.21.1 

Answers 2

Just read the source code, it's clear.

def clip(a, a_min, a_max, out=None):     """a : array_like Array containing elements to clip."""     return _wrapfunc(a, 'clip', a_min, a_max, out=out)  def _wrapfunc(obj, method, *args, **kwds):     try:         return getattr(obj, method)(*args, **kwds)     #This situation has occurred in the case of     # a downstream library like 'pandas'.     except (AttributeError, TypeError):         return _wrapit(obj, method, *args, **kwds)  def _wrapit(obj, method, *args, **kwds):     try:         wrap = obj.__array_wrap__     except AttributeError:         wrap = None     result = getattr(asarray(obj), method)(*args, **kwds)     if wrap:         if not isinstance(result, mu.ndarray):             result = asarray(result)         result = wrap(result)     return result 

rectify:

after pandas v0.13.0_ahl1,pandas has it's own implement of clip.

Answers 3

There are two parts to the performance difference to be aware of here:

  • Python overhead in each library (pandas being extra helpful)
  • Difference in numeric algorithm implementation (pd.clip actually calls np.where)

Running this on a very small array should demonstrate the difference in Python overhead. For numpy, this is understandably very small, however pandas does a lot of checking (null values, more flexible argument processing, etc) before getting to the heavy number crunching. I've tried to show a rough breakdown of the stages which the two codes go through before hitting C code bedrock.

data = pd.Series(np.random.random(100)) 

When using np.clip on an ndarray, the overhead is simply the numpy wrapper function calling the object's method:

>>> %timeit np.clip(data.values, 0.2, 0.8)        # numpy wrapper, calls .clip() on the ndarray >>> %timeit data.values.clip(0.2, 0.8)            # C function call  2.22 µs ± 125 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) 1.32 µs ± 20.4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each) 

Pandas spends more time checking for edge cases before getting to the algorithm:

>>> %timeit np.clip(data, a_min=0.2, a_max=0.8)   # numpy wrapper, calls .clip() on the Series >>> %timeit data.clip(lower=0.2, upper=0.8)       # pandas API method >>> %timeit data._clip_with_scalar(0.2, 0.8)      # lowest level python function  102 µs ± 1.54 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) 90.4 µs ± 1.01 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) 73.7 µs ± 805 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) 

Relative to overall time, the overhead of both libraries before hitting C code is pretty significant. For numpy, the single wrapping instruction takes as much time to execute as the numeric processing. Pandas has ~30x more overhead just in the first two layers of function calls.

To isolate what is happening at the algorithm level, we should check this on a larger array and benchmark the same functions:

>>> data = pd.Series(np.random.random(1000000))  >>> %timeit np.clip(data.values, 0.2, 0.8) >>> %timeit data.values.clip(0.2, 0.8)  2.85 ms ± 37.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 2.85 ms ± 15.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)  >>> %timeit np.clip(data, a_min=0.2, a_max=0.8) >>> %timeit data.clip(lower=0.2, upper=0.8) >>> %timeit data._clip_with_scalar(0.2, 0.8)  12.3 ms ± 135 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 12.3 ms ± 115 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 12.2 ms ± 76.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 

The python overhead in both cases is now negligible; time for wrapper functions and argument checking is small relative to the calculation time on 1 million values. However there is a 3-4x speed difference which can be attributed to numeric implementation. By investigating a bit in the source code, we see that the pandas implementation of clip actually uses np.where, not np.clip:

def clip_where(data, lower, upper):     ''' Actual implementation in pd.Series._clip_with_scalar (minus NaN handling). '''     result = data.values     result = np.where(result >= upper, upper, result)     result = np.where(result <= lower, lower, result)     return pd.Series(result)  def clip_clip(data, lower, upper):     ''' What would happen if we used ndarray.clip instead. '''     return pd.Series(data.values.clip(lower, upper)) 

The additional effort required to check each boolean condition separately before doing a conditional replace would seem to account for the speed difference. Specifying both upper and lower would result in 4 passes through the numpy array (two inequality checks and two calls to np.where). Benchmarking these two functions shows that 3-4x speed ratio:

>>> %timeit clip_clip(data, lower=0.2, upper=0.8) >>> %timeit clip_where(data, lower=0.2, upper=0.8)  11.1 ms ± 101 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 2.97 ms ± 76.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 

I'm not sure why the pandas devs went with this implementation. np.clip may be a newer API function that previously required a workaround. There is also a little more to it than I've gone into here, since pandas checks for various case before running the final algorithm, and this is only one of the implementations that may be called.

Answers 4

The reason why the performance differs is because numpy first tends to search for pandas implementation of the function using getattr than doing the same in builtin numpy functions when a pandas object is passed.

Its not the numpy over the pandas object that is slow, its the pandas version.

When you do

np.clip(pd.Series([1,2,3,4,5]),a_min=None,amax=1)   

_wrapfunc is being called :

# Code from source  def _wrapfunc(obj, method, *args, **kwds):     try:         return getattr(obj, method)(*args, **kwds) 

Due to _wrapfunc's getattr method :

getattr(pd.Series([1,2,3,4,5]),'clip')(None, 1) # Equivalent to `pd.Series([1,2,3,4,5]).clip(lower=None,upper=1)` # 0    1 # 1    1 # 2    1 # 3    1 # 4    1 # dtype: int64 

If you go through the pandas implementation there is a lot of pre checking work that is done. Its the reason why the functions which has the pandas implementation done via numpy has such difference in speed.

Not only clip, functions like cumsum,cumprod,reshape,searchsorted,transpose and much more uses pandas version of them than numpy when you pass them a pandas object.

It might appear numpy is doing the work over those objects but under the hood its the pandas function.

If You Enjoyed This, Take 5 Seconds To Share It

0 comments:

Post a Comment