Saturday, January 13, 2018

sqlContext HiveDriver error on SQLException: Method not supported

Leave a Comment

I have been trying to use sqlContext.read.format("jdbc").options(driver="org.apache.hive.jdbc.HiveDriver") to get Hive table into Spark without any success. I have done research and read below:

How to connect to remote hive server from spark

Spark 1.5.1 not working with hive jdbc 1.2.0

http://belablotski.blogspot.in/2016/01/access-hive-tables-from-spark-using.html

I used the latest Hortonworks Sandbox 2.6 and asked the community there the same question:

https://community.hortonworks.com/questions/156828/pyspark-jdbc-py4jjavaerror-calling-o95load-javasql.html?childToView=156936#answer-156936

What I want to do is very simple via pyspark:

df = sqlContext.read.format("jdbc").options(driver="org.apache.hive.jdbc.HiveDriver", url="jdbc:hive2://localhost:10016/default", dbtable="sample_07",user="maria_dev", password="maria_dev").load() 

That gave me this error:

17/12/30 19:55:14 INFO HiveConnection: Will try to open client transport with JDBC Uri: jdbc:hive2://localhost:10016/default Traceback (most recent call last):   File "<stdin>", line 1, in <module>   File "/usr/hdp/current/spark-client/python/pyspark/sql/readwriter.py", line 139, in load     return self._df(self._jreader.load())   File "/usr/hdp/current/spark-client/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py", line 813, in __call__   File "/usr/hdp/current/spark-client/python/pyspark/sql/utils.py", line 45, in deco     return f(*a, **kw)   File "/usr/hdp/current/spark-client/python/lib/py4j-0.9-src.zip/py4j/protocol.py", line 308, in get_return_value py4j.protocol.Py4JJavaError: An error occurred while calling o119.load. : java.sql.SQLException: Method not supported at org.apache.hive.jdbc.HiveResultSetMetaData.isSigned(HiveResultSetMetaData.java:143) at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD$.resolveTable(JDBCRDD.scala:136) at org.apache.spark.sql.execution.datasources.jdbc.JDBCRelation.<init>(JDBCRelation.scala:91) at org.apache.spark.sql.execution.datasources.jdbc.DefaultSource.createRelation(DefaultSource.scala:57) at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:158) at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:119) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381) at py4j.Gateway.invoke(Gateway.java:259) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:209) at java.lang.Thread.run(Thread.java:748) 

Using beeline, it works fine

beeline> !connect jdbc:hive2://localhost:10016/default maria_dev maria_dev Connecting to jdbc:hive2://localhost:10016/default Connected to: Spark SQL (version 2.1.1.2.6.1.0-129) Driver: Hive JDBC (version 1.2.1000.2.6.1.0-129) Transaction isolation: TRANSACTION_REPEATABLE_READ 0: jdbc:hive2://localhost:10016/default> select * from sample_07 limit 2; +----------+-------------------------+------------+---------+--+ |   code   |       description       | total_emp  | salary  | +----------+-------------------------+------------+---------+--+ | 00-0000  | All Occupations         | 134354250  | 40690   | | 11-0000  | Management occupations  | 6003930    | 96150   | +----------+-------------------------+------------+---------+--+ 

I could also do this:

spark = SparkSession.Builder().appName("testapp").enableHiveSupport().‌​getOrCreate() spark.sql("select * from default.sample_07").collect() 

But this reads into Hive Metadata directly. I would like to use JDBC to Spark Thrift Server for fine-grained security.

I could do PostgreSQL like so:

sqlContext.read.format("jdbc").options(driver="org.postgresql.Driver") 

I could also use Scala java.sql.{DriverManager, Connection, Statement, ResultSet} to create JDBC Connection as a client side to get to Spark. But that basically puts all data into memory and then re-create Dataframe manually.

So the question is: Is there a way to create Spark dataframe with Hive table data without loading data into memory into JDBC client like Scala and not use SparkSession.Builder() like examples above? My use case is that I need to deal with fine-grained security.

1 Answers

Answers 1

I'm not sure if understand your question correctly or not, But from what I understand you will need to get a hive table into data frame, for that you don't need to have the JDBC connection, in your example links they are trying to connect to different databases (RDBMS), not Hive.

Please see the below approach, using hive context you can get the table into a data frame.

import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.sql.{DataFrame, SQLContext}  def main(args: Array[String]): Unit = {  val sparkConf = new SparkConf().setAppName("APPName")     val sc = new SparkContext(sparkConf)     val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)     val sqlContext = new SQLContext(sc)  val hive_df = hiveContext.sql("select * from schema.table").first()  //other way // val hive_df= hiveContext.table ("SchemaName.TableName")  //Below will print the first line df.first() //count on dataframe df.count()  } 

If you really want to use the JDBC connection I have the below example that I used for Oracle database, which might help you.

val oracle_data = sqlContext.load("jdbc", Map("url" -> "jdbc:oracle:thin:username/password//hostname:2134/databaseName", "dbtable" -> "Your query tmp", "driver" -> "oracle.jdbc.driver.OracleDriver")); 
If You Enjoyed This, Take 5 Seconds To Share It

0 comments:

Post a Comment