Friday, May 4, 2018

Scanned Document - Text & Background clarity not good using OpenCV + iOS

Leave a Comment

After the scanning the document, I am applying the image processing using OpenCV library. I am not getting the quality of the scanned document like the Scannable iOS app.

I am using below code for image processing:

- (UIImage *)applyImageProcessing:(UIImage *)aImage {     cv::Mat originalMat = [self cvMatFromUIImage:aImage];     cv::Mat dest_mat(aImage.size.width, aImage.size.height, CV_8UC4);     cv::Mat intermediate_mat(aImage.size.width, aImage.size.height, CV_8UC4);      cv::multiply(originalMat, 0.5, intermediate_mat);     cv::add(originalMat, intermediate_mat, dest_mat);      return [self UIImageFromCVMat:dest_mat]; }  - (cv::Mat)cvMatFromUIImage:(UIImage*)image {     CGColorSpaceRef colorSpace = CGImageGetColorSpace(image.CGImage);     CGFloat cols = image.size.width;     CGFloat rows = image.size.height;      cv::Mat cvMat(rows, cols, CV_8UC4); // 8 bits per component, 4 channels (color channels + alpha)     CGContextRef contextRef = CGBitmapContextCreate(cvMat.data,     // Pointer to data                                                 cols,           // Width of bitmap                                                 rows,           // Height of bitmap                                                 8,              // Bits per component                                                 cvMat.step[0],  // Bytes per row                                                 colorSpace,     // Color space                                                 kCGImageAlphaNoneSkipLast                                                 | kCGBitmapByteOrderDefault); // Bitmap info flags      CGContextDrawImage(contextRef, CGRectMake(0, 0, cols, rows), image.CGImage);     CGContextRelease(contextRef);     return cvMat; }  - (UIImage *)UIImageFromCVMat:(cv::Mat)cvMat {     NSData *data = [NSData dataWithBytes:cvMat.data length:cvMat.elemSize()*cvMat.total()];      CGColorSpaceRef colorspace;      if (cvMat.elemSize() == 1)     {         colorspace = CGColorSpaceCreateDeviceGray();     }     else     {         colorspace = CGColorSpaceCreateDeviceRGB();     }      CGDataProviderRef provider = CGDataProviderCreateWithCFData((__bridge CFDataRef)data);      // Create CGImage from cv::Mat     CGImageRef imageRef = CGImageCreate(cvMat.cols, cvMat.rows, 8, 8 * cvMat.elemSize(), cvMat.step[0], colorspace, kCGImageAlphaNone | kCGBitmapByteOrderDefault, provider, NULL, false, kCGRenderingIntentDefault);      // get uiimage from cgimage     UIImage *finalImage = [UIImage imageWithCGImage:imageRef];     CGImageRelease(imageRef);     CGDataProviderRelease(provider);     CGColorSpaceRelease(colorspace);     return finalImage; } 

My App Scanned document quality & clearity

Scannable iOS App Scanned document quality & clearity

How can I get result of my scanned document like as scannble app?


Original image:

Scannable app original image:

1 Answers

Answers 1

You need to estimate the light fall off on the paper to be able to make it uniform. A simple, non-local estimate for a white paper background is local maximum. By choosing the kernel size carefully large enough to not be contained within any character, you can filter out text (Fig. @middle). Subsequently you can estimate the per-pixel-gain.

If needed, you can use Canny detector to detect spots where localmax does not apply -- in this case the pins top of the image -- and maybe process them differently.

Finally, you can apply a global lut operation for maximal contrast, e.g., one that you'd do with Photoshop curves tool.

cv::Mat src; // input image if( src.type()!=CV_8UC3 )     CV_Error(CV_StsError,"not impl"); cv::Mat median; // remove highlight pixels e.g., those from debayer-artefacts and noise cv::medianBlur(src,median,5); cv::Mat localmax; // find local maximum cv::morphologyEx( median,localmax,     cv::MORPH_CLOSE,cv::getStructuringElement(cv::MORPH_RECT,cv::Size(15,15) ),     cv::Point(-1,-1),1,cv::BORDER_REFLECT101 );  // compute the per pixel gain such that the localmax goes to monochromatic 255 cv::Mat dst = cv::Mat(src.size(),src.type() ); for ( int y=0;y<src.rows;++y){     for ( int x=0;x<src.cols;++x){         const cv::Vec3b & v1=src.at<cv::Vec3b>(y,x);         const cv::Vec3b & v2=localmax.at<cv::Vec3b>(y,x);         cv::Vec3b & v3=dst.at<cv::Vec3b>(y,x);         for ( int i=0;i<3;++i )         {             double gain = 255.0/(double)v2[i];             v3[i] = cv::saturate_cast<unsigned char>( gain * v1[i] );         }     } } // and dst is the result 

:::EDIT::: For papers containing not just text, I modified the algorithm to use a simple Gaussian model. Particularly, I used the detectLetters by @William Extracting text OpenCV and truncated the localmax into mean +/- 1 standard deviation away from what is estimated inside the text rectangles.

cv::Mat input = cv::imread(ss.str()+".jpg", CV_LOAD_IMAGE_COLOR ); int maxdim = input.cols; //std::max(input.rows,input.cols); const int dim = 1024; if ( maxdim > dim ) {     double scale = (double)dim/(double)maxdim;     cv::Mat t;     cv::resize( input, t, cv::Size(), scale,scale );     input = t; } if ( input.type()!=CV_8UC3 )     CV_Error(CV_StsError,"!bgr"); cv::Mat result; input.copyTo( result ); // result is just for drawing the text rectangles  // as previously... cv::Mat median; // remove highlight pixels e.g., those from debayer-artefacts and noise cv::medianBlur(input,median,5); cv::Mat localmax; // find local maximum cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT,cv::Size(15,15) ); cv::morphologyEx( median,localmax,cv::MORPH_CLOSE,kernel,cv::Point(-1,-1),1,cv::BORDER_REFLECT101 );  std::vector< cv::Rect > bb; // detectLetters by @William, modified to internally do the grayscale conversion if necessary // https://stackoverflow.com/questions/23506105/extracting-text-opencv?rq=1 detectLetters( input, bb ); // compose a simple Gaussian model for text background (still assumed white) cv::Mat mask( input.size(),CV_8UC1,cv::Scalar( 0 ) ); if ( bb.empty() )     return; // TODO; none found for ( size_t i=0;i<bb.size(); ++i ) {     cv::rectangle( result, bb[i], cv::Scalar(0,0,255),2,8 ); // visualize only     cv::rectangle( mask, bb[i], cv::Scalar( 1 ), -1 ); // create a mask for cv::meanStdDev  } cv::Mat mean,dev; cv::meanStdDev( localmax, mean, dev, mask ); if ( mean.type()!=CV_64FC1 || dev.type()!=CV_64FC1 || mean.size()!=cv::Size(1,3) || dev.size()!=cv::Size(1,3) )     CV_Error(CV_StsError, "should never happen"); double minimum[3]; double maximum[3]; // simply truncate the localmax according to our simple Gaussian model (+/- one standard deviation) for ( unsigned int u=0;u<3;++u ) {     minimum[u] = mean.at<double>(u ) - dev.at<double>( u );     maximum[u] = mean.at<double>(u ) + dev.at<double>( u ); } for ( int y=0;y<mask.rows;++y){     for ( int x=0;x<mask.cols;++x){         cv::Vec3b & col = localmax.at<cv::Vec3b>(y,x);         for ( unsigned int u=0;u<3;++u )         {             if ( col[u]>maximum[u] )                 col[u]=maximum[u];             else if ( col[u]<minimum[u] )                 col[u]=minimum[u];         }     } } // do the per pixel gain then cv::Mat dst; input.copyTo( dst ); for ( int y=0;y<input.rows;++y){     for ( int x=0;x<input.cols;++x){         const cv::Vec3b & v1=input.at<cv::Vec3b>(y,x);         const cv::Vec3b & v2=localmax.at<cv::Vec3b>(y,x);         cv::Vec3b & v3=dst.at<cv::Vec3b>(y,x);         for ( int i=0;i<3;++i )         {             double gain = 255.0/(double)v2[i];             v3[i] = cv::saturate_cast<unsigned char>( gain * v1[i] );         }     } }  // and dst is the result 

A NEW sample result can be found here:

https://i.imgur.com/FL1xcUF.jpg

:::

enter image description here

If You Enjoyed This, Take 5 Seconds To Share It

0 comments:

Post a Comment