I'm trying to fit a finite mixture model, with the mixture models for each class being neural networks. It'd be super-useful for me to be able to be able to parallelize, because keras doesn't max out all of the available cores on my laptop, let alone a large cluster.
But when I try to set different learning rates for different models inside of a parallel foreach loop the whole thing chokes.
What is going on? I suspect that it has something to do with scope -- the workers aren't running on separate instantiations of tensorflow, maybe. But I really don't know. How can I make this work? And what do I need to understand to know why this doesn't work?
Here's a MWE. Set the foreach
loop to %do%
and it works fine. Set it to %dopar%
and it chokes on the fitting stage.
library(foreach) library(doParallel) registerDoParallel(2) library(keras) library(tensorflow) mnist <- dataset_mnist() x_train <- mnist$train$x y_train <- mnist$train$y x_test <- mnist$test$x y_test <- mnist$test$y x_train <- array_reshape(x_train, c(nrow(x_train), 784)) x_test <- array_reshape(x_test, c(nrow(x_test), 784)) # rescale x_train <- x_train / 255 x_test <- x_test / 255 y_train <- to_categorical(y_train, 10) y_test <- to_categorical(y_test, 10) # make tensorflow run single-threaded session_conf <- tf$ConfigProto(intra_op_parallelism_threads = 1L, inter_op_parallelism_threads = 1L) # Create the session using the custom configuration sess <- tf$Session(config = session_conf) K <- backend() K$set_session(sess) models <- foreach(i = 1:2) %dopar%{ model <- keras_model_sequential() model %>% layer_dense(units = 256/i, activation = 'relu', input_shape = c(784)) %>% layer_dropout(rate = 0.4) %>% layer_dense(units = 128/i, activation = 'relu') %>% layer_dropout(rate = 0.3) %>% layer_dense(units = 10, activation = 'softmax') print("A") model %>% compile( loss = 'categorical_crossentropy', optimizer = optimizer_rmsprop(), metrics = c('accuracy') ) print("B") history <- model %>% fit( x_train, y_train, epochs = 3, batch_size = 128, validation_split = 0.2, verbose = 0 ) print("done") }
Here's sessionInfo()
:
R version 3.5.1 (2018-07-02) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 18.04.1 LTS Matrix products: default BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1 LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 [6] LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] splines parallel stats graphics grDevices utils datasets methods base other attached packages: [1] panelNNET_1.0 matrixStats_0.54.0 MASS_7.3-50 lfe_2.8-2 tensorflow_1.9 keras_2.1.6.9005 [7] mgcv_1.8-24 nlme_3.1-137 scales_1.0.0 forcats_0.3.0 stringr_1.3.1 purrr_0.2.5 [13] readr_1.1.1 tidyr_0.8.1 tibble_1.4.2 tidyverse_1.2.1 maptools_0.9-3 rgeos_0.3-28 [19] rgdal_1.3-4 sp_1.3-1 broom_0.5.0 ggplot2_3.0.0 randomForest_4.6-14 dplyr_0.7.6 [25] glmnet_2.0-16 Matrix_1.2-14 doBy_4.6-2 doParallel_1.0.11 iterators_1.0.10 foreach_1.4.4 loaded via a namespace (and not attached): [1] httr_1.3.1 jsonlite_1.5 modelr_0.1.2 Formula_1.2-3 assertthat_0.2.0 cellranger_1.1.0 [7] yaml_2.2.0 pillar_1.3.0 backports_1.1.2 lattice_0.20-35 glue_1.3.0 reticulate_1.10 [13] digest_0.6.15 RcppEigen_0.3.3.4.0 rvest_0.3.2 colorspace_1.3-2 sandwich_2.5-0 plyr_1.8.4 [19] pkgconfig_2.0.1 haven_1.1.2 xtable_1.8-2 whisker_0.3-2 withr_2.1.2 lazyeval_0.2.1 [25] cli_1.0.0 magrittr_1.5 crayon_1.3.4 readxl_1.1.0 xml2_1.2.0 foreign_0.8-70 [31] tools_3.5.1 hms_0.4.2 munsell_0.5.0 bindrcpp_0.2.2 compiler_3.5.1 rlang_0.2.2 [37] grid_3.5.1 rstudioapi_0.7 base64enc_0.1-3 labeling_0.3 gtable_0.2.0 codetools_0.2-15 [43] R6_2.2.2 tfruns_1.3 zoo_1.8-3 lubridate_1.7.4 zeallot_0.1.0 bindr_0.1.1 [49] stringi_1.2.4 Rcpp_0.12.18 tidyselect_0.2.4
1 Answers
Answers 1
Keras requires there is only one training in a given session. I would try to create a different session for each model.
I would insert this part of the code inside the %dopar%, to create a different session per model
sess <- tf$Session(config = session_conf) K <- backend() K$set_session(sess)
0 comments:
Post a Comment